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Introduction – WRF Software Characteristics 

•  Developed from scratch beginning around 1998, primarily Fortran 

and C 

•  Requirements emphasize flexibility over a range of platforms, 

applications, users, performance 

•  WRF develops rapidly. First released Dec 2000; current release WRF 

v3.3.1 (Sep 2011); next release WRF v3.4 (April 2012) 

•  Supported by flexible efficient architecture and implementation called 

the WRF Software Framework 



Introduction - WRF Software Framework Overview 

•  Implementation of  WRF Architecture 

–  Hierarchical organization 
–  Multiple dynamical cores 
–  Plug compatible physics 
–  Abstract interfaces (APIs) to external packages 
–  Performance-portable 

•  Designed from beginning to be adaptable to today’s computing 

environment for NWP 

http://box.mmm.ucar.edu/wrf/WG2/bench/ 

ARW solver 

Physics Interfaces 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 
Plug-compatible physics 

Plug-compatible physics 

NMM solver 

Top-level Control, 
Memory Management, Nesting,  
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Hardware: The Computer 

•  The ‘N’ in NWP 

•  Components 

–  Processor 

•  A program counter 
•  Arithmetic unit(s) 

•  Some scratch space (registers) 

•  Circuitry to store/retrieve from memory device 

•  Cache 

–  Memory 
–  Secondary storage 

–  Peripherals 

•  The implementation has been continually refined, but the basic idea hasn’t 

changed much 
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Hardware has not changed much… 

~50,000 flop/s 
48hr 12km WRF CONUS in 600 years 

~5,000,000,000 flop/s 
48 12km WRF CONUS in 52 Hours 

6-way superscalar 

36-bit floating point precision 

~144 Kbytes 

A computer in 1960 

IBM 7090 
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Dual core, 4.7 GHz chip 

64-bit floating point precision 

1.9 MB L2, 36 MB L3 

Upto 16 GB per processor 
IBM P6 

A computer in 2008 



…how we use it has 

•  Fundamentally, processors haven’t changed much since 1960 

•  Quantitatively, they haven’t improved nearly enough 

–  100,000x increase in peak speed 
–  100,000x increase in memory size 

•  We make up the difference with parallelism 

–  Ganging multiple processors together to achieve 1011-12 flop/second 
–  Aggregate available memories of 1011-12 bytes 

~1,000,000,000,000 flop/s ~250 procs 
48-h,12-km WRF CONUS in under 15 minutes 
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•  If the machine consists of 4 nodes, each with 4 processors, how many different ways can 
you run a job to use all 16 processors? 

–  4 MPI processes, each with 4 threads 

setenv OMP_NUM_THREADS 4 
mpirun –np 4 wrf.exe 

‒  8 MPI processes, each with 2 threads 

setenv OMP_NUM_THREADS 2 
mpirun –np 8 wrf.exe 

‒  16 MPI processes, each with 1 thread 

setenv OMP_NUM_THREADS 1 
mpirun –np 16 wrf.exe 

Examples 

4 threads 

1 MPI 

4 threads 

1 MPI 

4 threads 

1 MPI 

4 threads 

1 MPI 
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Application:  WRF 

•  WRF can be run serially or as a parallel job 

•  WRF uses domain decomposition to divide total amount of 

work over parallel processes  
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Application:  WRF 

•  The decomposition of the application over processes has two levels: 

–  The domain is first broken up into rectangular pieces that are 
assigned to MPI (distributed memory) processes. These pieces 
are called patches 

–  The patches may be further subdivided into smaller rectangular 
pieces that are called tiles, and these are assigned to shared-
memory threads within the process. 
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Model domains are decomposed for parallelism on two-levels 
Patch: section of model domain  allocated to a distributed memory  
node, this is the scope of a mediation layer solver or physics driver. 

Tile: section of a patch allocated to a shared-memory processor within a 
node; this is also the scope of a model layer subroutine. 

Distributed memory parallelism is over patches; shared memory 
parallelism is over tiles within patches 

•  Single version of code for efficient execution on: 

–  Distributed-memory 

–  Shared-memory (SMP) 

–  Clusters of SMPs 

–  Vector and microprocessors 

Parallelism in WRF: Multi-level Decomposition 

Logical 
domain 

1 Patch, divided 
into multiple tiles 

Inter-processor 
communication 
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Distributed Memory Communications 

Communication is required between patches when a 
horizontal index is incremented or decremented on the right-
hand-side of an assignment.   

On a patch boundary, the index may refer to a value that is 
on a different patch. 

Following is an example code fragment that requires 
communication between patches 

Note the tell-tale +1 and –1 expressions in indices for rr, H1, 
and H2  arrays on right-hand side of assignment.  

These are horizontal data dependencies because the 
indexed operands may lie in the patch of a neighboring 
processor. That neighbor’s updates to that element of the 
array won’t be seen on this processor. 

When"
Needed?"

Why?"

Signs in"
code"



                      (module_diffusion.F ) 

SUBROUTINE horizontal_diffusion_s (tendency, rr, var, . . . 
. . . 
   DO j = jts,jte 
   DO k = kts,ktf 
   DO i = its,ite 
      mrdx=msft(i,j)*rdx 
      mrdy=msft(i,j)*rdy 
      tendency(i,k,j)=tendency(i,k,j)-                          & 
           (mrdx*0.5*((rr(i+1,k,j)+rr(i,k,j))*H1(i+1,k,j)-      & 
                      (rr(i-1,k,j)+rr(i,k,j))*H1(i  ,k,j))+     & 
            mrdy*0.5*((rr(i,k,j+1)+rr(i,k,j))*H2(i,k,j+1)-      & 
                      (rr(i,k,j-1)+rr(i,k,j))*H2(i,k,j  ))-     & 
            msft(i,j)*(H1avg(i,k+1,j)-H1avg(i,k,j)+             & 
                       H2avg(i,k+1,j)-H2avg(i,k,j)              & 
                                )/dzetaw(k)                     & 
           ) 
   ENDDO 
   ENDDO 
   ENDDO 
 . . . 

Distributed Memory Communications 



•  Halo updates 

Distributed Memory MPI 
Communications 

memory on one processor memory on neighboring processor 

* 
+ * 
* 

* * 
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•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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Distributed Memory (MPI) 
Communications 
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patch 



•  Halo updates 
•  Periodic boundary updates 
•  Parallel transposes 
•  Nesting scatters/gathers 

Distributed Memory (MPI) 
Communications 
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NEST:2.22 km INTERMEDIATE: 6.66 km 

COARSE 
Ross Island 
6.66 km 



Review – Computing Overview 

APPLICATION 
(WRF) 

HARDWARE 
(Processors, Memories, Wires) 

SYSTEM 
(UNIX, MPI, OpenMP) 

Domain contains Patches contain Tiles 

Job contains Processes contain Threads 

Cluster contains Nodes contain Processors 

Distributed  
Memory 
Parallel 

Shared 
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Parallel 
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•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



WRF Software Architecture 

•  Hierarchical software architecture 

–  Insulate scientists' code from parallelism and other architecture/
implementation-specific details 

–  Well-defined interfaces between layers, and external packages for 
communications, I/O, and model coupling facilitates code reuse and 
exploiting of community infrastructure, e.g. ESMF. 

Registry 



WRF Software Architecture 

•  Driver Layer 
–  Domains: Allocates, stores, decomposes, represents abstractly as single 

data objects 
–  Time loop: top level, algorithms for integration over nest hierarchy 

Registry 



WRF Software Architecture 

•  Mediation Layer 
–  Solve routine, takes a domain object and advances it one time step 
–  Nest forcing, interpolation, and feedback routines 

Registry 



WRF Software Architecture 

•  Mediation Layer 
–  The sequence of calls for doing a time-step for one domain is known 

in Solve routine 
–  Dereferences fields in calls to physics drivers and dynamics code 
–  Calls to message-passing are contained here as part of Solve routine 

Registry 



WRF Software Architecture 

•  Model Layer 
–  Physics and Dynamics: contains the actual WRF model routines are 

written to perform some computation over an arbitrarily sized/
shaped, 3d, rectangular subdomain 

Registry 



Call Structure Superimposed on Architecture 

wrf  (main/wrf.F) 

integrate (frame) 

KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
KFCPS  (phys/module_ra_kf.F 
WSM5  (phys/module_mp_wsm5.F 

solve_interface -> solve_em (dyn_em) 

module_microphysics_driver (phys) 

module_microphysics_drive (phys) 

module_first_rk_step_part1 (dyn_em) 



•  Architecture 

•  Directory structure 

•  Model Layer Interface 

•  Data Structures 

•  I/O 

WRF Software Overview 



WRF Model Layer Interface – The Contract with Users 

OMP Config 
Inquiry I/O API 
Config 
Module WRF Tile - callable 

Subroutines 

Solve DM comm 

Th
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Driver 

All state arrays passed through argument list 
as simple (not derived) data types 

Domain, memory, and run dimensions passed 
unambiguously in three dimensions 

Model layer routines are called from mediation 
layer (physics drivers) in loops over tiles, 
which are multi-threaded 



WRF Model Layer Interface – The Contract with Users 

OMP Config 
Inquiry I/O API 
Config 
Module WRF Tile - callable 
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Driver 

Restrictions on Model Layer subroutines: 

No I/O, communication 

No stops or aborts 
Use wrf_error_fatal 

No common/module storage of  
decomposed data 

Spatial scope of  a Model Layer call is 
one “tile” 



SUBROUTINE driver_for_some_physics_suite (  
    . . . 
!$OMP DO PARALLEL 
   DO ij = 1, numtiles 
      its = i_start(ij) ; ite = i_end(ij) 
      jts = j_start(ij) ; jte = j_end(ij) 
      CALL model_subroutine( arg1, arg2, . . . 
           ids , ide , jds , jde , kds , kde , 
           ims , ime , jms , jme , kms , kme , 
           its , ite , jts , jte , kts , kte ) 
   END DO 
    . . . 

 END SUBROUTINE 

WRF Model Layer Interface 



           template for model layer subroutine        

 SUBROUTINE model_subroutine ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 

 IMPLICIT NONE 

 ! Define Arguments (State and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 

WRF Model Layer Interface 



           template for model layer subroutine        

. . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = jts, MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = its, MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

WRF Model Layer Interface 



           template for model layer subroutine        

 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
   ids, ide, jds, jde, kds, kde, &  ! Domain dims 
   ims, ime, jms, jme, kms, kme, &  ! Memory dims 
   its, ite, jts, jte, kts, kte  )  ! Tile dims 

 IMPLICIT NONE 

 ! Define Arguments (S and I1) data 
 REAL, DIMENSION (ims:ime,kms:kme,jms:jme) :: arg1, . . . 
 REAL, DIMENSION (ims:ime,jms:jme)         :: arg7, . . . 
  . . . 
 ! Define Local Data (I2) 
 REAL, DIMENSION (its:ite,kts:kte,jts:jte) :: loc1, . . . 
  . . . 
 ! Executable code; loops run over tile  
 ! dimensions 
 DO j = MAX(jts,jds), MIN(jte,jde-1) 
   DO k = kts, kte 
     DO i = MAX(its,ids), MIN(ite,ide-1) 
       loc1(i,k,j) = arg1(i,k,j) + … 
     END DO 
   END DO 
 END DO 

•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 
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 SUBROUTINE model ( &  
   arg1, arg2, arg3, … , argn,   & 
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•  Domain dimensions 
•  Size of logical domain 
•  Used for bdy tests, etc. 

•  Memory dimensions 
•  Used to dimension dummy 

arguments 
•  Do not use for local arrays 

•  Tile dimensions 
•  Local loop ranges 
•  Local array dimensions 

•  Patch dimensions 
•  Start and end indices of local 

distributed memory subdomain 
•  Available from mediation layer 

(solve) and driver layer; not usually 
needed or used at model layer 
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WRF I/O 

•  Streams: pathways into and out of model 
–  History + auxiliary output streams (10 and 11 are reserved for 

nudging) 
–  Input + auxiliary input streams (10 and 11 are reserved for 

nudging) 
–  Restart, boundary, and a special Var stream 



WRF I/O 

•  Attributes of streams 
–  Variable set 

• The set of WRF state variables that comprise one read or 
write on a stream 

• Defined for a stream at compile time in Registry 
–  Format 

• The format of the data outside the program (e.g. NetCDF), 
split 

• Specified for a stream at run time in the namelist 



WRF I/O 

•  Attributes of streams 
–  Additional namelist-controlled attributes of streams 

• Dataset name 
• Time interval between I/O operations on stream 
• Starting, ending times for I/O (specified as intervals from 

start of run) 



Outline - Review 

•  Introduction 
–  WRF started 1998, clean slate, Fortran + C 
–  Targeted for research and operations 

•  WRF Software Overview 
–  Hierarchical software layers 
–  Patches (MPI) and Tiles (OpenMP) 
–  Strict interfaces between layers 
–  Contract with developers 
–  I/O 


